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Abstract

Dehydrated fruit pieces and purées are commonly used in many food formulations and
toppings for food products like yogurts, ice creams, and cereals. However, one of the
biggest problems in fruit dehydration is the prevention of the development of unpleasant
off-flavour that can negatively impact on the sensory quality of the final dried fruit
products. In recent years, fruit dehydration has been conducted using either thermal or
non-thermal drying techniques. Therefore, the present review examines how the different
dehydration technologies, namely conventional hot air-drying, ultrasonic-assisted hot air-
drying, sun-drying, spray-drying, Refractance Window™ drying, cast-tape drying, thin-
layer catalytic far-infrared radiation drying, withering, freeze-drying, microwave-drying,
and osmotic dehydration impact on the volatile constituents of the final dried fruit
products. Drying processes result in noticeable losses/reduction of several impact
odorants. Moreover, some compounds are produced either via: (1) hydrolysis of relevant
glycosides under high temperatures, or (2) thermal degradation of volatile and non-volatile
precursors as well as oxidation and Maillard reactions which result in the production of
heterocyclics, and saturated and unsaturated aldehydes. Of significance is the Refractance
Window™ drying which exhibits high retention potential (~ 90%) of volatile compounds
present in fresh fruits. Refractance Window™ drying technology ensures rapid drying of
food products at very low temperature.
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Introduction

communis L.; Komes et al., 2007), dried white figs
(Ficus carica L.; Muji¢ et al., 2014), and dried lulo

Drying is a process whereby moisture is
vaporised from the food’s surface. Drying is quite
unique for its noteworthy extension of food shelf
stability. Drying has also been employed in the
production of fruit pieces (Martynenko and Janaszek,
2014). Fruit dehydration is known to increase the
cohesiveness of the final product (Martynenko and
Janaszek, 2014). Moreover, drying can induce cell
shrinkage which could result in poor rehydration of
the dried fruit (Martynenko and Janaszek, 2014). The
impact of drying on the flavour qualities of several
dried fruits such as apple food products (Li et al.,
2010; Mothibe et al., 2014; Tsuruta et al., 2015),
white dehydrated grapes (Rolle et al., 2012), air-dried
raisins (Wang et al., 2015), dried mango (Mangifera
indica; Bonneau et al., 2016), dehydrated pear (Pyrus
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fruits (Solanum quitoense Lam; Forero et al., 2015)
has been reported. Upon drying, moisture is lost from
the outer surface of the fruit, and with further drying,
cell shrinkage sets in. Usually, the shrinkage will
normally start from the fruit’s surface and progress
inward. Studies have validated similar trend for the
loss of volatile compounds during drying of fruits
(Goubet et al., 1998; Conte et al., 2019). In addition,
the properties of the flavour compounds such as
functional groups, polarity, relative volatility, and
molecular weight could affect the retention of volatile
compounds in the product. One unique problem of
fruit dehydration is the development of unpleasant
off-flavour in the dried fruit (Osorio et al., 2011). To
solve this problem, researchers have adopted the non-
thermal drying techniques in drying fruits. Some of
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the noteworthy non-thermal drying methods which
are currently being used are lyophilisation (Ceballos
et al., 2012), osmotic dehydration (Osorio et al.,
2007), and refractance window system (Abonyi et al.,
2002). Therefore, the present review examines how
the different dehydration technologies impact on the
volatile constituents of the final dried fruit products.

Analysis of volatile compounds in dehydrated fruits

Various trapping technologies have been used
to collect volatile compounds from fruit samples,
either directly or after concentration, as in head-space
techniques. Some examples of these methods are the
dynamic head-space or purge-and-trap technique.
These methods have successfully been employed
with dehydrated cherry tomatoes (Heredia et al.,
2012) and dried carrots (Daucus carota L. ssp. sativus
var. atrorubens Alef.; Keskin et al., 2021; Guclu et
al., 2021). Similarly, solvent assisted flavour
evaporation (SAFE) and head-space solid phase
micro-extraction (HS-SPME) are examples of other
trapping methods regularly used in the extraction of
volatile compounds from food matrices. For example,
Bonneau et al. (2016) and Forero et al. (2015)
employed SAFE to extract volatile compounds from
dried mangoes and dried lulo fruits, respectively. On
the other hand, HS-SPME has been employed in dried
fruits like tomatoes (Rajkumar et al., 2021), figs
(Ficus carica L.; Russo et al., 2017), and apple slices
(Conte et al., 2019). Less frequently used extraction
methods are the stir bar sorptive extraction (SBSE)
and distillation under reduced pressure. However,
two recent studies reported on the effectiveness of
both techniques. For example, SBSE was used in the
spray-dried soursop (Annona muncata; Neta et al.,
2019), and distillation under reduced pressure was
employed in dried mulberry (Morus alba L.; Hwang
and Kim, 2020).

Extraction is usually followed by volatiles’
analysis, and this is often carried out with the aid of
versatile instruments such as gas chromatography
with flame ionisation detection (GC-FID), gas
chromatography-olfactometry (GC-0), gas
chromatography-mass spectrometry (GC-MS), and
the comprehensive two-dimensional gas
chromatography-mass spectrometry (GCx GC-MS)
(Raice et al., 2015; Allamy et al., 2018; Neta et al.,
2019). These different techniques provide excellent
sensitivity and results.

Effect of different dehydration techniques on aroma
formation and losses in dehydrated fruits

Conventional hot air-drying of fruits
Apple (Malus domestica Borkh.)

Slices of apple cultivar Golden Delicious (10.0
+ 0.2 mm thick x 20.0 £ 0.3 mm diameter) were dried
using conventional hot air-drying unit, and was
reported by Conte et al. (2019). In that study, three
drying methods were employed. The first method
involved microwave drying at 35, 55, and 65°C. The
second drying method involved the use of hot air
drying at 55 and 65°C, respectively. The third method
was a combination of both hot air- and microwave-
drying at 65°C. Fifty volatile compounds of different
groups of compounds namely esters, aldehydes,
alcohols, and acids were reported in the fresh apple
fruit. In that study, esters were the main volatile
compounds identified. Some of the esters were
butylacetate, 2-methyl-1-butyl acetate, and hexyl
acetate. Another prominent class of compounds
identified were the aldehydes with hexanal and 2-
hexenal being the main aldehydes. The application of
different drying methods significantly affected the
overall volatile compounds concentration in the dried
apple samples. For example, the hot air-drying
method produced more pronounced reductions in the
levels of the esters and aldehydes in the dried apples
as compared to other drying methods such as
microwave or the combination of hot air- and
microwave-drying, respectively. In that study, the
probable losses in the VOCs could be associated with
stripping. On the other hand, the formation of new
VOCs was mainly due to oxidation, thermal
degradation, and the conversion of non-volatile
precursors to new flavour components.

Previous study on the formation of flavour
compounds by the reaction of amino acid and
carbonyl compounds under mild conditions has
shown that thermal degradation of volatile and non-
volatile precursors, as well as oxidation and Maillard
reactions often result in the production of
heterocyclics, as well as aldehydes (i.e., saturated and
unsaturated) (Pripis-Nicolau et al., 2000). Most
times, some of these aldehydes cause off-flavour. For
example, while 5-methyl-2-furfural, furan-2-
carbaldehyde, benzaldehyde, and 2,4-decadienal
were found in the dried apples, they were absent in
the fresh apples (Conte et al., 2019).
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Carrot (Daucus carota L.)

The drying of shredded fresh black carrot
sample (250 g) at 60°C was reported by Keskin et al.
(2021), which generated 32 volatile compounds
comprising of alcohols, aldehydes, acids, esters, and
terpenes. Drying of the black carrots significantly
reduced the quantities of the volatiles identified in the
dried carrots. For instance, drying produced almost
39% reduction in the total concentration of volatiles
in the dried carrots. While the fresh black carrots
recorded a total volatile concentration of 40,699 ug
kg?, the dried carrots had a much lower concentration
(15,988 ug kgt). The terpenes were the predominant
group of volatiles in both the fresh and the dried black
carrots.

Kebede et al. (2014) have earlier reported the
presence of high amounts of terpenes in other carrots.
It is worthy of note that there were significant
decreases in the levels of monoterpenes found in the
dried carrots. For example, the p-myrcene,
terpinolene, a-pinene, and limonene were noticeably
reduced in the dried black carrots (Keskin et al.,
2021). The observed loses could be a result of their
high partition coefficient. Earlier study has shown the
high susceptibility of these compounds to losses via
evaporation (Bonneau et al., 2016). Other compounds
affected substantially by drying in the black carrots
were alcohols and esters (isobornyl acetate and
methyl palmitate). 2-furanmethanol (furfuryl alcohol)
was only found in the dried carrot samples (Keskin et
al., 2021).

Fig (Ficus carica L. cv. Dottato)

The drying of whole fig samples in a pilot plant
cabinet dryer at 60°C and 25% (wet basis) was
reported by Russo et al. (2017), which generated 42
volatile compounds with the aldehydes accounting
for approximately 80% of the compounds. Of these,
benzaldehyde and hexanal were the most abundant
aldehydes identified in the dried figs. Conversely,
ethyl alcohol, 1-dodecanol, 1-octen-3-ol, 3-methyl-
butanal, pentanal, heptanal, nonanal, octanal, and
ethyl acetate occurred in lower concentrations. While
drying of figs resulted in significant increases in
furans and terpenes in the dried fruits, it however,
resulted in significant decreases in alcohols and
esters. In addition, aldehydes and ketones showed
noticeable changes after drying; for example, there
was a remarkable decrease in the concentration of
hexanal while a corresponding increase in the
concentration of benzaldehyde was reported.

Moreover, compounds such as 2-heptanone, 2-
octanone, 2-nonanone, D-limonene, 2-pentylfuran,
nonanal, decanal, and (E)-2-decenal recorded
significant increases. This is probably due to
oxidation or the effect of drying (Russo et al., 2017).

Lime [Citrus aurantifolia (Christm.) Swingle]

The drying of lime fruits was reported by
Ramesh Yadav et al. (2004), which generated 32
volatile compounds. Monoterpene hydrocarbons
accounted for approximately 83% of the classes of
compounds reported in both fresh and dried lime
fruits. This was followed by the alcohols (18%).
Other classes of compounds identified with
appreciable abundance in the lime fruit were the
sesquiterpenes, aldehydes, and esters, respectively.
The major compound identified in the lime fruits was
the cyclic monoterpene and limonene, and other
volatiles with appreciable abundances were the -
pinene, y-terpinene, nerolidol, and a-terpineol. In
addition, the following compounds namely neryl
acetate, geranyl acetate, neral, geranial, dodecanal,
and tetradecanal were also identified in both fresh and
dried fruits. It is worthy of note that drying did not
significantly alter the quantities of volatiles in both
fresh and dried lime fruits.

Mulberry (Morus alba L.)

The drying of mulberry fruits at either 50 or
60°C was reported by Hwang and Kim (2020), which
generated 30 volatile compounds. Of these, 12
volatile compounds were found in both fresh and
dried fruits, respectively. Some of these compounds
were  benzaldehyde, ethyl  acetate, 1,3-
cyclohexadiene, 2,4-dimethylheptane, 4-
methyloctane,  cyclopentane,  carboxaldehyde,
cyclohexene oxide, 2-cyclohexen-1one, phenol, and
nonadecane. These compounds occurred in different
concentrations in either mulberry samples dried at
either 50 or 60°C. For example, ethyl acetate recorded
significantly (p < 0.05) higher concentration in
mulberry fruits dried at 50°C than those dried at 60°C.
This was followed by the fresh sweet 2-cyclohexen-
1-one. Another compounds identified in the dried
mulberry fruits is 2-cyclohexen-1-ol (Jo et al., 2013).

Ultrasonic-assisted hot air-drying (HUD) of fruits
Lulo (Solanum quitoense Lam.) fruit

The ultrasonic-assisted hot air-drying of
homogenised lulo fruit pulp with maltodextrin was
reported by Forero et al. (2015), which generated
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only 16 volatile compounds. The major classes of
compounds were esters (methyl benzoate, methyl
butanoate, ethyl butanoate, ethyl hexanoate, and
methyl hexanoate), aldehydes (hexanal, (Z)-3-
hexenal, (E)-2-hexenal), acids (acetic acid and
butanoic acid), and alcohols (methyl-2-butanol, (2)-
3-hexen-1-ol), (2)-3-hexenal, and methyl hexanoate
(fruity)). Most of the C6 compounds such (Z)-3-
hexenal, (E)-2-hexenal, and the corresponding
alcohol and ester derivatives are often referred to
green volatiles because of their leafy-green aroma
nuance. Most of the green volatiles are biosynthesised
from polyunsaturated fatty acids in the thylakoid
membranes by a series of enzymes (Kunishima et al.,
2016). In addition, (E)-2-hexenal has been reported as
a product of (Z)-3-hexenal isomerisation in the
biosynthesis pathway, although, the enzyme
responsible has not been identified (Kunishima et al.,
2016). Moreover, drying resulted in the losses of
acetic acid, (Z2)-3-hexenal, (Z)-3-hexen-1-ol, and
butanoic acid. In contrast, the drying process had only
slight effect on the esters.

Grape (Vitis vinifera L.)

The air-drying of seedless grape cultivars
namely Thompson Seedless, Flame Seedless, and
Crimson Seedless in ventilated and lucifugal adobe
houses (3 x 4 x 6 - 8 m®) was reported by Fang et al.
(2010), which generated 73 volatile compounds of
which alcohols, aldehydes, and terpenoids accounted
for the majority of the classes of compounds. Of
these, 39 compounds were found in the free and
bound forms of the raisins (Table 1). On the other
hand, 34 volatile compounds were reported only in
the free form (Wang et al., 2015). In addition, 13
aldehydes which were identified in that study only
occurred in the free form in the raisins. Esters were
also found in the raisins only in the free forms. The
only exception to this was methyl salicylate. Methyl
salicylate was found in the bound-form in Muscat
grape (Baek and Cadwallader, 1999). In addition,
compounds like lilac alcohol, neral, hexadecanoic
acid, (E)-p-ocimene, and diethyl succinate were
identified for the first time in the raisins. Only three
pyrazines (2-ethyl-6-methyl pyrazine, 3-ethyl-2,5-
dimethyl pyrazine, and 2,6-diethylpyrazine) were
identified in the raisins. The furans were only
identified in the free form with furfural having the
highest concentration.

Most of the terpenes identified in the raisins
were identified for the first time. The only exceptions

to this were the geranylacetone and a-terpineol
(Wang et al., 2015). In that study, nerol, geraniol, and
geranic acid which occurred in the free form
generated the greatest values (149 to 237 pg L7,
respectively. On the other hand, higher
concentrations were obtained for the bound forms of
B-damascenone, geraniol, geranic acid, neral, and
nerol (Wang et al., 2015).

Innovative drying technologies
Cast-tape drying

The drying of pineapple (Ananas comosus (L.)
Merrill) pulp-cassava suspension using the cast-tape
method (Figure 1) was reported by Simao et al.
(2021). This significantly reduced the number of
volatile compounds identified in the fresh samples.
The major volatile compounds found in the dried
samples were hexadecane, 2,5-dimethyl-4-hydroxy-
3(2H)-furanone, bis (2-ethylhexyl) adipate, and
acetic acid. These results constituted a reduction of
about 45% of the initial volatile compounds in the
fresh samples. In that study, 2,5-dimethyl-4-hydroxy-
3(2H)-furanone and acetic acid were newly generated
compounds in the dried samples. Cast-tape drying
resulted in the losses of ethanol, 2-phenylethanol,
ethyl acetate, isoamyl acetate, and phenethyl acetate,
respectively.

Refractance Window™ drying

The drying of “Bocadillo banana” (Musa
acuminata Colla) slices (2.3 cm diameter) using
drying window refractance (RW) (Figure 2) at 70, 80,
and 90°C was reported by Ormaza et al. (2016),
which generated 30 volatile compounds. Of these,
aldehydes, alcohols, acids, esters, and ketones were
the predominant groups of compounds identified in
the dried banana slices. The major volatile
compounds were 2-pentanone, 2-methyl-1-propanol,
2-pentanol, 3-methyl-1-butanol, isoamyl butyrate, 3-
hydroxy-2-butanal, methyl isovalerate, and acetic
acid. The window refractance retained on average
80% of the volatile compounds. The treatment at
80°C was better as it retained the highest percentage
(91%) of the volatile compounds. The reason for this
observation is not farfetched since RWD has been
known to retain aroma and other qualities of dried
food products (Bernaert et al., 2019). The beauty of
RWD technology is that it is an efficient and rapid
drying method that dries product at very low
temperature.
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Figure 1. Schematic representation of cast-tape drying (CTD) experimental device (adapted from Durigon
etal., 2018).
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Spray-drying

The spray-drying of soursop (Annona muricata
L.) on a laboratory dryer was reported by Neta et al.
(2019), which generated 85 volatile compounds. Of
these compounds, the aliphatic esters accounted for
approximately 78% or 173 mg kg™ of the identified
compounds, followed by terpenes, acids, and
alcohols. Spray-drying noticeably reduced the
volatile compounds of the fresh fruit. For example,
some compounds such as cis-11-hexadecenal, (Z,E)-
a-bergamotol, ethyl-2-hexanoate, phenyl ethanal,
(2)-7-hexadecenal, (Z)-9-hexadecenal, acetic acid,
pentadecanoic acid, methyl-4-oxohexanoate, ethyl
octanoate, dimethyl hexanedioate, methyl vanillate,
a-pinene, a-ocimene, and farnesane which were
identified in the fresh fruit were not found in the dried
powdered fruit (Neta et al., 2019). Overall, quite
significant amount of volatiles were lost (73%) in the
rehydrated soursop powder as a result of spray-
drying. The probable reasons for the large losses of
volatile compounds might be due to the retention of
particulates within the spray-dryer (Forero et al.,
2015; Durigon et al., 2018).

Freeze-drying
Red guava (Psidium guajava L. cv. Pedro Sato)

The dehydration of fresh guava using a freeze-
dryer was reported by Nunes et al. (2016), which
generated 31 volatile compounds. The volatile
compounds were made up of 16 terpenes, six esters,
and five aldehydes, respectively. Alpha-humulene
and B-caryophyllene were the major volatile
compounds in both fresh and freeze-dried guava
samples, and they contributed altogether
approximately 34 - 48% of the total volatiles’ content.
Beta-caryophyllene which is usually found in
combination with its isomer, a-humulene, is a key
aroma compound of guava fruit (Pino and Bent,
2013). Freeze-drying of guava did not alter the
characteristic fresh guava aroma. This is reflected in
the high relative contents of compounds such as (Z2)-
3-hexenyl acetate, hexanal, and (E)-2-hexenal.
However, freeze-drying caused appreciable reduction
in the concentrations of some compounds such as a-
pinene oxide, ethyl acetate, caryophyllene oxide, (Z)-
3-hexenyl butyrate, (Z)-3-hexenyl acetate, hexyl
acetate, (Z)-3-hexenyl hexanoate, hexanal, (E)-2-
hexenal, and 2-nonenal. Most probable reasons for
this observation might be due to the high vapour
pressure within the freeze-dryer (Nunes et al., 2016).

Pear (Pyrus communis L.)

The dehydration of pear pureés in a freeze-
dryer was reported by Komes et al. (2007), which
generated 19 volatile compounds. Of these, methyl
butanoate, propyl acetate, ethyl butanoate, hexanal,
butyl acetate, 2-hexenal, n-amyl acetate, and hexyl
acetate accounted for approximately 80% of the
compounds. It is noteworthy that the retention of
volatile compounds in freeze-dried pureés is directly
related to the dehydration method and the type of
sugars added prior to dehydration.

Withering

The dehydration of Erbaluce grape cultivar was
reported by Rolle et al. (2012). The natural off-vine
withering process of Erbaluce grapes resulted in
noticeable changes in the colour of some berry
clusters. Some berries changed from their initial
green-yellow colour to green, gold, and blue grapes,
respectively. These changes are caused by the
disintegration of those proteins which already exist
within the cell of the grape and moulds (Rolle et al.,
2012). In that study, a total of 58 free volatile
compounds belonging to 11 different classes were
reported in the three types of dehydrated grapes. The
blue dehydrated grapes volatiles were dominated
majorly by acids, terpenoids, norisoprenoids, ethyl,
and methyl esters as compared to volatiles of the other
grapes. The dehydration of the grapes engendered the
formation of norisoprenoids which were formed via
the oxidation of carotenoids (Rolle et al., 2012). The
dehydration of infected berries by Botrytis cinerea
resulted in these blue grapes as well as the formation
of C-18 unsaturated long-chain esters, &-lactones, 3-
furanacetic acid, and methyl benzeneacetate. Other
compounds identified in the blue grape were cis-
bisabolene, indipone, phenol, and glycerol. In
addition, 8-lactones were the most abundant volatile
compounds, accounting for 67%, followed by esters
(32%). Meanwhile, the alcohols accounted for 54%
(w/v) of the total volatiles in the green grapes. Other
major volatile compounds in the green Erbaluce
dehydrated grapes were the methyl hexadecanoate,
ethyl hexadecanoate, and benzenoids. These were
followed by homovanillic acids, terpenoids, and
ketones. In the case of the third type of grape (i.e.,
gold dehydrated grapes), there was a significant
increase in the level of hexanoic acid, and a slight
reduction in the levels of total esters as compared to
the other types of grapes. Overall, the gold
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dehydrated grapes produced similar volatile profile to
that of the green grapes.
A summary of the results of research

conducted using other drying technologies on the
volatile compounds’ retention or losses in dehydrated
fruits are further presented in Table 2.

Table 2. Summary of the results of research conducted using other drying technologies on the volatile
compounds’ retention or losses in dehydrated fruits.

Fruit

Drying
technology

Critical findings on volatile compound

Reference

Pear

Foam-mat

In foam-mat dried pear puree without sugar addition, all esters,
except butyl butanoate, were retained in the average percentage
of 33%.

Foam-mat drying was only able to retain 31% of the fresh fruit
aroma compounds.

Komes et al.
(2007)

Balsam pear

Microwave

The following compounds were newly generated and varied
with drying time, for example, ethyl lactate, 2-pentene-1-ol,
ethylbenzene, and xylene.

Some compounds appeared when the samples were burned,
such as cis-decahydro-1-methyl-quinoline.

Li et al.
(2021)

Figs

Sun drying

Ethyl alcohol, isopentyl alcohol, isopentyl alcohol acetate, ethyl
acetate, 3-mehtylbutanal, hexanal, and benzaldehyde were the
major compounds in both fresh and dried Dottato figs.

Russo et al.
(2017)

Sapodilla

Oven drying

Twenty-nine aroma-active compounds were quantified in fresh
and dried sapodilla fruits.

Fresh fruit showed higher potency for ethyl benzoate, E-2-
hexenal, and f3-caryophyllene.

The dried fruit exhibited very high potency for a-sinensal, and
to a lesser extent, E-2-hexenal, ethyl benzoate, B-caryophyllene,
and hexyl benzoate.

Lasekan and
Yap (2018)

Tomato

Freeze drying

An increase in contents of compounds such as dimethyl
sulphide, 2-ethyl furan, hydroxymethyl furfural, acetaldehyde,
and a-terpineol was found in all dehydrated products.
Compounds such as 3-methyl furan, hexanol, and terpinyl
acetate were found to occur only in dehydrated products.

The presence of y-undecalactone (fruity odour note) was
identified for the first time in fresh and all dehydrated tomatoes.

Rajkumar et
al. (2021)

Moscato
bianco’
grapes

Cane-cut on-
vine

Increased glycosidically-bound volatile compounds than in the
free fraction was reported.

Bound linalool showed a significant increase of 52% when
cane-cut withering system was applied.

There was a significant glycosylated forms of nerol and
geraniol observed in the two on-vine withering systems at 24"
day vs control.

Giacosa et al.
(2019)

Strawberries

Osmotic
dehydration

Osmotic treatments provoked a loss in volatile compounds due
to the migration, mainly of esters, into the osmotic media.

The variations in the volatile pattern depended on both time of
treatment and type of osmotic solution.

The greater changes occurred after 2 h in sucrose; with a
promotion of fermentative volatiles (acetaldehyde, ethyl
acetate), and a decrease in the other volatiles.

Rizzolo et al.
(2007)

Pineapple

Conductive
multiflash

drying

Drying processes caused changes in the volatile compounds'
profile. Part of the compounds detected in the pineapple pulp
samples were lost during the drying.

On the other hand, the hexadecane content showed a significant
increase after drying, corresponding to 57.42 and 85.52% of the
total volatile fraction in the pineapple product.

Some compounds were only identified in the dried samples,
such as 2,5-dimethyl-4-hydroxy-3(2H)-furanone (furaneol) and
acetic acid.

Simao et al.
(2021)
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Thin-layer e Application of FIR enhanced the flavour of the dried tomatoes
catalytic far- by 36.6% when compared with the raw ones.
. . Abano et al.
Tomato infrared e Enhancement in flavour. (2014)
radiation e Improvements in the quality and functional property of dried
drying tomatoes were produced.
e Drying resulted in substantial losses of most compounds.
. . e The total amount of volatiles decreased by about 59%.
A pilot unit .
UTA d New compounds appeared and enrichment of some compounds B
Mango (. ryer, was observed after drying onneau et
Villeneuvesur- . al. (2016)

Lot, France)

e Limonene, f-myrcene, §-3-carene, B-caryophyllene, y-
butyrolactone, and 3-methylbutyl butanoate were found to be

flavour contributors in both fresh and dried mangoes.

Challenges and future perspective

In recent years, drying has grown to be a prime
operation in the food industry with several drying
methods being used. Of these is the conventional hot
air-drying. This method exposes fruit to high
temperatures which often results in high losses of
volatile constituents and the formation of off-flavour
compounds. Moreover, the best drying method,
which is the freeze-drying, is fraught with problems
of high maintenance, end-product cost, and the
production of significant losses of bioactive
compounds. However, a novel drying technology,
Refractance Window™ drying has gained huge
attention due to its several advantages which includes
the ability to dry heat-sensitive products, retention of
fruit’s colour and aroma, it dries the product through
a thin, transparent infrared film which forms a
‘window’ for drying, and the drying cost and energy
consumption are lower than conventional drying
technologies. The ability of this technology to
produce high quality dried fruits with high aroma
compound retention is a pointer to its potential scale
up for industrial fruit processing.

Conclusion

Dehydration processes result in noticeable
losses/reduction of volatile compounds such as
monoterpenes, sesquiterpenes, aliphatic alcohols,
esters, and lactones, which are considered as impact
odorants. Dehydration processes also result in the
production of some compounds either via (1)
hydrolysis of relevant glycosides under high
temperatures, or (2) thermal degradation of volatile
and non-volatile precursors, as well as oxidation and
Maillard reactions, which result in the production of
heterocyclics, and saturated and unsaturated
aldehydes. Another dehydration process namely
grape withering significantly improves the
development of fruit aroma, and contributes to

carotenoid oxidation, thus leading to the formation of
the pleasant-smelling norisprenoids. Of significance
is the Refractance Window™ drying which exhibits
high retention potential (~ 90%) of volatile
compounds present in fresh fruits. This drying
technology produces rapid food drying at very low
temperature.
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